If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-20n-144=0
a = 4; b = -20; c = -144;
Δ = b2-4ac
Δ = -202-4·4·(-144)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-52}{2*4}=\frac{-32}{8} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+52}{2*4}=\frac{72}{8} =9 $
| 63+9x=82 | | 18(n-7)=36 | | 2x+4x-8+x+7=32 | | 6x=38=74 | | 8(k-2)=56 | | X/7=(2x-1)/3 | | x*x=200 | | 5(m-23)=-30 | | x^2−4x−12=0 | | x2−4x−12=0 | | 2k^2+3k+7=0 | | −10+5x=7x−4 | | 118/t=-16t^2+118t+15 | | P-3/3+p-2/4=7 | | -3z+11=12+3z | | -16t^2-100t+15=0 | | 3x+26=10x51 | | 1/5x-3=-17 | | 1/2=1/2x-2 | | 2-a/4=-1 | | -0.3x-9.1=10 | | x-3/3=-4 | | 9.5=-d+5.6 | | x(x+2)=x2+3 | | 1/c2-12c+24=0 | | 10(x-7)=0 | | 1+3/c2-11c+30=3/c-6 | | 21(2−x)+12x=44 | | x^2-2x+6/x=5 | | 2/3h−1/3h+11=8 | | 16t2-100t+15=0 | | 23h−13h+11=8 |